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 The purpose of this paper is two-fold: To study oriented G-bundles and the 
corresponding K-theory, and to generalize the p-local splittings 

   / CokF O BSO J×  and    CokSF J J×  

of Sullivan to the equivariant case. 
 This paper is divided into 5 parts. We start by recapitulating some essential facts 
about complex and real GK -theory, and we study their classifying spaces. 
 In section 2 we introduce G-SO-bundles and G-Spin-bundles, and we find a 
connection between these and the 'equivariant Stiefel-Whitney-classes'. 
 In section 3 we study the space GBSO  in detail, at least when G is of odd order. 
Results about the λ-ring-structure on GBSO  of Atiyah-Tall and Atiyah-Segal are 
generalized – here it is necessary to assume that G is a p-group, where p is an odd 
prime, and that we are in the p-local situation. 
 In section 4 we study the space GSF  using the equivariant Adams' conjecture, 
and finally in section 5 we define the e-invariant and prove the Sullivan splittings. 
 
 Throughout the paper G is assumed to be finite. All G-Spaces are assumed to 
have a basepoint fixed under the G-action, and normally we consider only 
G-CW-complexes, which are finite and G-connected. 
 
 I would like to thank Ib Madsen, Jørgen Tornehave and Marcel Bökstedt for 
many enlightening discussions. 
 
 
 
1. Preliminary remarks about GK - and GKO -theory 
 
 In this section we briefly describe the functors ( )GK −  and ( )GKO −  and the 
corresponding classifying spaces. 
 
 ( )GK X  is defined in [S68], p.132, as the Grothendieck group of the additive 
semigroup of complex G-bundles over the G-CW-complex X. The tensor-product of 
G-bundles gives a multiplication on ( )GK X , and ( )GK X  becomes a commutative 
ring. Similarly, we have the ring ( )GKO X , obtained by using real rather than 
complex G-bundles. 
 ( )GK X is the reduced version of ( )GK X . It is defined as the subgroup of ( )GK X  
generated by differences E F−  of complex G-bundles, such that for every x X∈ , the 
fibres xE  and xF  over x are equivalent xGC -modules. Here { | }xG g G gx x= ∈ =  is 
the isotropy group. 
 We define ( )GKO X , the reduced version of ( )GKO X , in the same way. 
 
 
Remark 1.1 
 If X is a G-connected G-CW-complex, i.e. for every subgroup H of G the fixed 
point space HX  is connected, then it follows from the local triviality condition of [L], 
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p. 258, that the difference E F−  of G-bundles over X is in ( )GK X  if and only if the 
fibres *E  and *F  over the basepoint * are isomorphic G-modules. 
 
 
 By using an equivariant version of Brown's representation theorem, cf. [LMS], 
(1.5.11), we see that the functors ( )GK −  and ( )GKO −  are representable. We denote 
the classifying spaces by GBU  and GBO , respectively. 
 
 
Proposition 1.2 
 Let 1,..., mU U  be a complete set of inequivalent, irreducible complex 
representations of G. Then 

  
1

( )
m

G
G

i

BU BU
=
∏  

 
Proof: 
 From [S68], (2.2), we recall the isomorphism 
 
(1.3) : ( ) ( ) ( )GR G K X K Xμ ⊗ →  
 
where X is a trivial G-Space. As ( ) [ , ] [ , ]G G

G G GK X X BU X BU≅ ≅ , and ( )R G  is a 
free Z -module generated by 1,..., mU U , the reduced version of this isomorphism 

(1.4) : ( ) ( ) ( )GR G K X K Xμ ⊗ →  

would imply the result. 
 μ maps ( ) ( )R G K X⊗  into ( )GK X : Let E and F be bundles over X with 

( )E F K X− ∈ . Then the fibres xE  and xF  for every x X∈  have the same dimension. 
If V is a complex G-representation, then ( ( ))V E Fμ ⊗ −  is contained in ( )GK X , as 
the fibres xV E⊗  and xV F⊗  over x are isomorphic GC -modules. 
 On the other hand, ( ( ) ( )) ( )GR G K X K Xμ ⊗ = : Let  ( )GK Xξ∈ . In virtue of 

(1.3) we can find elements 1, ... , mζ ζ  in ( )K X , such that 
1

m

i i
i

U
=

ξ = ⊗ ζ∑ . The fibre of 

the virtual G-bundle ξ over x is then, as an element of ( )R G , given by   

  
0 0

( )
m m

x i i x i i
i i

U d U
= =

ξ = ⊗ ζ = ⋅∑ ∑  

where id  is the complex dimension of ( )i xζ . As ( )GK Xξ∈ , xξ vanishes as an 
element of ( )R G , and we conclude that the id 's are zero. Thus, the iζ 's are contained 
in ( )K X , and (1.4) follows. 

QED 
 
In the real case we have the following: 
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Proposition 1.5 
 Let 1 2, , ..., kU U U  be GR -modules, 1 2, , ... , mV V V  be GC -modules, and 

1 2, , ... , nW W W  be GH -modules, such that (2.6) in [K] is satisfied. Then 

  
1 1 1

k m n
G

G
x y z

BO BO BU BSp
= = =

× ×∏ ∏ ∏  

Proof: 
 The proof is analogous to that of (1.2) and uses as input, the isomorphism 

(1.6) 
1 1 1

: ( ) ( ) ( ) ( )
k m n

Gx y z
KO X K X KSp X KO X

= = =
Φ ⊕ ⊕ →⊕ ⊕ ⊕    

of [K] (5.1). Here X is assumed to be a trivial G-space. 
QED 

 
 
 Direct sum of vector-bundles makes ( )GK −  and ( )GKO −  into Abelian groups, 
and we thus get an 'additive' G-Hopf-space structures on GBU  and GBO . 
(G-Hopf-spaces are defined in [Br], p.II.10.) We denote GBU  and GBO  with this 
'additive' structure by GBU ⊕   and GBO ⊕ . 
 It is also possible to define 'multiplicative' G-Hopf-structures on GBU  and GBO . 

For a finite G-CW-complex X we consider the sets 1 ( )GK X+  and 1 ( )GKO X+ . As 

every element in ( )GK X  and ( )GKO X  is nilpotent, cf. [S68], (5.1), the tensor-

product makes  1 ( )GK X+  and 1 ( )GKO X+  into Abelian groups. By invoking 
Brown's representation theorem we get the representing G-Hopf-spaces GBU ⊗  and 

GBO ⊗ . 
 The map   ( ) 1 ( ) : 1G GK X K X x x→ + +   is a bijection for every 
G-CW-complex X, and it follows that GBU ⊕  and GBU ⊗  are G-homotopy-equivalent 
G-Spaces. Similarly we see that GBO ⊕ and GBO ⊗  are equivalent G-spaces. 
 
 
 For later use we need the following: 
 
 
Proposition 1.7 
 Let X be a G-Space. If E is a complex G-bundle over X, then there exists a 

GC -module M and a complex G-bundle E⊥  such that E E⊥⊕ ≅ M  (where M 
denotes the trivial G-bundle M X X× ↓ ). 
 Similarly, if F is a real G-bundle, then there is an GR -module N and a real 
G-bundle F ⊥  such that F F ⊥⊕ ≅ N . 
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Proof: 
 The complex case is (2.4) in [S68]. 
 In the real case we do the following: F ⊗R C  is a complex G-bundle, and we can 
thus find a complex G-bundle 1F , such that 1( )F F⊗ ⊕ ≅R C M , where M is a 

GC -module. Now, F is a direct summand of the underlying real G-bundle 
( )r F ⊗R C  of F ⊗R C  with orthogonal complement 2F . By taking underlying real 

G-bundles, we obtain the relation   

  1 2( ( ) )F r F F⊕ ⊕ ≅ r M( ) .   

Let 1 2( )F r F F⊥ = ⊕ , and ( )N r M=  
QED 

 
 
2. G-SO- and G-Spin-bundles 
 
 In this section we introduce G-SO-bundles and G-Spin-bundles, and we relate the 
classifying spaces of the functors ( )GKSO − and ( )GKSpin −  to GBO . We start by 
defining the G-spaces GBSO  and GBSpin  as the G-1-connected and G-2-connected 
cover of GBO , respectively: 
 
 Recall that if 1n >  and X is a ( 1)n − -connected space with ( )n Xπ Abelian, then 
there is a map : ( ( ), )n nk X H X n→ π , unique up to homotopy, such that ( )n nkπ  is the 
identity map on ( )n Xπ . Here ( , )H A n  denotes the Eilenberg MacLane-space 
normally known as ( , )K A n . 
 In the equivariant case we assume that X is a G- ( 1)n − -connected 
G-CW-complex, i.e. for every subgroup H of G we have that the fixed point space 

HX  is ( 1)n − -connected. We want to define a G-map : ( ( ), )n G nk X H X n→ π , where 
( , )GH A n  is the equivariant Eilenberg-MacLane space classifying Bredon 

cohomology in dimension n with coefficients in the GO -group A , cf. [El], p. 277. 
( )n Xπ  is the GO -group sending the orbit /G H  to the Abelian group ( )H

n Xπ . 
 This map : ( ( ), )n G nk X H X n→ π  is defined as the element of 
[ , ( ( ), )]G

G nX H X Nπ  corresponding to [ , ( ( ), )]
Gn nk X H X n∈ Φ π O  under the bijection 

of [El], thm. 2. Here : ( ( ), )n nk X H X nΦ → π  is given by 
  ( / ) : ( / ) ( ( ), ) ( ( ), )( / )H H

n n n nk G H k X G H X H X n H X n G H= Φ = → π = π  
 
 
Definition 2.1 
 Let  
  1 1: ( ( ),1)G G Gw BO H BO→ π  
be the map 1k  from above. Let GBSO  denote the G-homotopy-fibre of 1w . ( 1k  is 
well-defined, as GBO  is G-connected, and 1( )H

GBOπ  is Abelian, cf. (1.5)). 
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 Similarly, let 
  2 2: ( ( ) ( / 2),2)G G Gw BSO H BSO→ π ⊗Z Z  
be the map 2r k , where : ( , ) ( ( / 2), )G Gr H A n H A n→ ⊗Z Z is the mod 2 reduction 
map, and where 2 2: ( ( ),2)G G Gk BSO H BSO→ π  is defined as above. Let GBSpin  
denote the G-homotopy-fibre of 2w . (An argument using the G-fibration 
  1( ( ),1)G G G GBSO BO H BO→ → π  
shows that GBSO  is G-1-connected, and 2 2: ( ( ),2)G G Gk BSO H BSO→ π  is thus well-
defined.) 
 
 
Proposition 2.2 
 Let 1 2, , ..., kU U U  be GR -modules, 1 2, , ... , mV V V  be GC -modules, and 

1 2, , ... , nW W W  be GH -modules, as in (1.5). Then 

  
1 1 1

k m n
G

G
x y z

BSO BSO BU BSp
= = =

× ×∏ ∏ ∏  

and 

  
1 1 1

k m n
G

G
x y z

BSpin BSpin BSpinU BSp
= = =

× ×∏ ∏ ∏  

where BSpinU is the homotopy-fibre of the composite map 
  2

2( ( ),2) ( ,2) ( / 2,2)k rBU H BU H H⎯⎯→ π = ⎯⎯→Z Z  
with r being the mod 2 reduction map.  
 
Proof: 
 This follows immediately from (1.5) by taking the l-connected and 2-connected 
covers of G

GBO . Recall that BSp  is 2-connected, BU is 1-connected with 

1( )BUπ ≅ Z , and that 1( ) / 2BOπ ≅ Z  and 2 ( )BOπ ≅ Z . 
QED 

 
 
Remark 2.3 
 BSpinU  is not the same space as cBSpin  of [St], p.292: We have that 

( ) ( )n nBSpinU BUπ ≅ π  for 2n > , and especially 6 ( )BSpinUπ ≅ Z , while cBSpin  sits 
in the fibration sequence  
  ( ,2) cH BSpin BSO→ →Z , 
and therefore 6 6( ) ( ) 0cBSpin BSOπ ≅ π = . 
 
 
 From [L], p.257, we have the general definition of G-A-bundles, where A is the 
structure group. We explicify this definition in the cases where ( )A SO n=  or 

( )Spin n : 
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Definition 2.4 
 A G-SO-bundle E X↓ of dimension n is a G-map :p E X→  between G-spaces 
such that 
1) non-equivariantly, the map :p E X→  is a ( )SO n -bundle, and 
2) for every x X∈  and g G∈  the restricted map | :

xE x gxg E E→  is a map of  
 Gx-SO-modules. 
 If E X↓  and F X↓  are G-SO-bundles of the same dimension n, then a map 

:f E F→  is a G-SO-bundle-map if f  is both a G-map and a ( )SO n -bundle-map. 
 It is easily seen that the pull-back *f E  along a G-map f again is a G-SO-bundle. 
Furthermore, the pull-backs along G-homotopic maps of the same G-SO-bundle are 
equivalent G-SO-bundles. We define the direct  sum E F⊕  of two G-SO-bundles 
E X↓  and F X↓  as *( )E F E F⊕ = Δ × , where : X X XΔ → ×  is the diagonal 
map. 
 Finally, we get the Grothendieck-group ( )GKSO X  of isomorphism-classes of 

G-SO-bundles over the G-space X, and we define ( )GKSO X  as the subgroup of 
( )GKSO X  generated by differences of bundles E F−  satisfying 

  : x xx X E F∀ ∈ ≅  as Gx-SO-modules. 
 
 
Definition 2.5 
 A G-Spin-bundle E X↓  of dimension n is two G-spaces E and X and a G-map 

:p E X→ such that 
1) :p E X→  is non-equivariantly a ( )Spin n -bundle, and 
2) for every x X∈  and g G∈  the restricted map | :

xE x gxg E E→  is a morphism of  
 G-Spin-modules. 
As with G-SO-bundles we get a Grothendieck-group ( )GKSpin X  and a reduced 

version ( )GKSpin X . 
 
 
 
Theorem 2.6 
 The classifying spaces of the functors ( )GKSO − and ( )GKSpin − are GBSO  and 

GBSpin , respectively.  
 
Proof: 
 We denote momentarily the classifying spaces for the functors ( )GKSO −  and 

( )GKSpin − by 1B  and 2B . We construct G-maps 1: GB BSOφ →   and 

2: GB BSpinψ →  and show that they are G-homotopy-equivalences. 
 The spaces 1B  and 2B  are G-connected, as for every subgroup H of G, we have 
that 
  0

0 1( ) ( ( / ) ) 0H
GB KSO S G H +π = ∧ =     
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and 
   0

0 2( ) ( ( / ) ) 0H
GB KSpin S G H +π = ∧ = . 

 We have a 'forgetful' map : ( ) ( )G GKSO X KO Xφ → for every G-connected 
G-CW-complex X, defined by sending a G-SO-bundle to its underlying orthogonal 
G-bundle. As φ  is a natural transformation between functors, we get a G-map 

1: GB BOφ → . 
 Let 1( )GE F KSO S− ∈ , where E and F are G-SO-bundles. We decompose E (and 
F) according to [K], (4.1): Using the notation of (1.5), we can find real bundles 

1 2, , ... kη η η , complex bundles 1 2, , ... mζ ζ ζ , and symplectic bundles 1 2, , ... nξ ξ ξ , such 
that 

(2.7) 1 1 1 1... ... n nE U V W= ⊗ η ⊕ ⊕ ⊗ ζ ⊕ ⊕ ⊗ ξR C H  

All the xη 's are SO-bundles, as the SO-action on E in Hom ( , )x G xU Eη = R  gives a 
SO-action on xη . Furthermore, our decomposition of E above is easily seen to be a 

decomposition of G-SO-bundles. Now, as 1 1 1( ) ( ) ( ) 0KSO S K S KSp S= = = , all SO-, 
U- and Sp-bundles over 1S  are trivial. Especially, the xη 's, the yζ 's and the zξ 's are 

trivial bundles, and E becomes a trivial G-bundle. We see that 1( ) 0GKSO S = , and as 
1 1( ( / ) ) ( )G HKSO S G H KSO S+∧ ≅ , we conclude that 1B  is G-1-connected. 

 The map 1 1 1: ( ( ),1)G Gw B H BOφ → π  is null-homotopic, as 
1

1 1 1 1[ , ( ( ),1)] ( ; ( ))G
G G G GB H BO H B BOπ = π  is zero: 1B  is G-1-connected, and [Br], 

(11.7.1) shows that 1B  is G-homotopy-equivalent to a G-complex with no cells in 
dimensions less that 2. The definition of G-cohomology, [Br], (1.6.4), implies that 

1
1 1( ; ( ))G GH B BOπ  vanishes. 

 We get a lift 1: GB BSOφ →  of φ . We show that for every finite, G-connected 

G-CW-complex X the induced map : ( ) [ , ]G
G GKSO X X BSOφ →  is an isomorphism. 

By using the equivariant Whitehead theorem and the fact that 
( ( / ) ) ( )n n

G HKSO S G H KSO S+∧ = , it suffices to consider the case where nX S= , 

1n ≥ . For 1n = , both 1( )GKSO S  and 1[ , ]G
GS BSO  are zero. 

 Let E and F be G-bundles over nS , 1n > , and let E F−  represent an element of 
[ , ] ( )n G n

GGS BSO KO S= . By using the decomposition (2.7), we get orthogonal 
bundles xη over nS . As ( ) ( )n nKO S KSO S= , the xη 's are actually SO-bundles, and E 
becomes a G-SO-bundle (the complex and symplectic parts of E give no problem 
here). Thus, we see that φ  is surjective. 
To show that φ  is injective, we show that the composite φ  is injective. So, let 

Ker( )E F− ∈ φ . Decompose E and F as above and note that we have 
O-isomorphisms between xη  and xη , U-isomorphisms between yζ  and yζ , and 

Sp-isomorphisms between zξ  and zξ . But on 0S  there is no difference between 

O-isomorphisms and SO-isomorphisms of vector-bundles, as ( ) ( )n nKO S KSO S≅ , 
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and as U- and Sp-isomorphisms are SO-isomorphisms, we get SO-isomorphisms on 
all the components in the decompositions of E and F. These are assembled to show 
that E F≅  as G-SO-bundles, and we see that 0E F− = , and φ  is injective. This 
shows that 1 GB BSO= . 

 The part of the theorem concerning ( )GKSpin −  and GBSpin  is proved in the 
same way: The map 2: GB BOψ →  is defined as the 'forgetful' map sending a 
G-Spin-bundle to its underlying orthogonal bundle. By using methods as above, we 
see that 1w ψ  and 2w ψ  are null-homotopic, and we get a G-map 2: GB BSpinψ →  
–  one of the main points is that if E X↓  is a complex bundle, then the obstruction to 
E being a Spin-bundle is 2

2 ( ) ( ; / 2)w E H X∈ Z . But 2 ( )w E  is the image of 1( )c E  
under the reduction map 2 2( ; ) ( ; / 2)H X H X→Z Z . (It is this fact that makes the use 
of the space BSpinU necessary). By showing that the decomposition (2.7) respects 
Spin-structures, we see as before that ψ  is a G-homotopy-equivalence. 

QED 
 
 We remark that the G-spaces GBSO  and GBSpin  are G-Hopf-spaces, cf. [Br], 
§11.4: The maps 1w  and 2w  are seen to be Hopf-maps by considering the 
functionality of the Elmendorfer construction – the map : ( ( ), )n nk X H X n→ π  will in 
general be a Hopf-map when X is a Hopf-space. GBSO  and GBSpin  with this 
Hopf-structure is denoted by GBSO ⊕  and GBSpin ⊕ . 
 The tensorproduct of G-SO- and G-Spin-bundles gives the Hopf-spaces GBSO ⊗  

and GBSpin ⊗  representing the functors 1 ( )GKSO+ −  and 1 ( )GKSpin+ − . As it is the 
case with GBO , we have that GBSO ⊕  and GBSO ⊗ , and that GBSpin ⊕  and GBSpin ⊗  
are equivalent G-spaces, but the Hopf-space-structures will in general be different. 
 
 
 For later use we describe the rational type of GBSO : 
 
 
Lemma 2.8 
 Let q be a prime not dividing the order of the group G. Let X be a G-space, and 
let Y be a q-local infinite G-loop space. Then the q-local map 
  ( ) ( ): [ , ] [ , ]

G

G
q qFix X Y X Y→ Φ Φ O  

sending the G-map :f X Y→  to the GO -map 
  ( ) : / ( : )H H HFix f G H f X Y→  
is a bijection. 
 
Proof: 
 This is essentially [LMS], (V.6.8) and (V.6.9): If ( , ) 1G q = , then 

  ( ) ( )
( )

[ , ] [ , ]G H H INV
q q

H

X Y X Y≅∏  
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where the superscript 'INV' indicates that we are considering homotopy classes of 
'invariant maps', [LMS] (V.6.5). But such an invariant homotopy class corresponds to 
a GO -homotopy class of GO -maps X YΦ →Φ . 

QED 
 
 
Proposition 2.9 
 Let GBSO Q  be the representing space of the functor ( )GKSO − ⊗Q . Then 

  
2

( ( ) , )G G n G
n

BSO H BSO n
∞

=

≅ π ⊗∏Q Q  

Proof: 
 From (2.8) we have 
  ( ) [ , ] [ , ]

G

G
G G GKSO X X BSO X BSO⊗ ≅ ≅ Φ ΦQ Q Q O  

For a subgroup H of G we have that 

  
1 1 1

k m n
H

G
x y z

BSO BSO BU BSp
= = =

× ×∏ ∏ ∏Q Q Q Q  

as it follows from (2.2), and where BSOQ , BUQ  and BSpQ  are the rational types of 
BSO , BU  and BSp , respectively. 
 It is well-known that 

  
2

( ( ) , )n
n

BSO H BSO n
∞

=

π ⊗∏Q Q  

and similarly for BU and BSp, and we see that 

  
2

( ( ) , )H H
G G n G

n

BSO H BSO n
∞

=

≅ π ⊗∏Q Q  

 By applying [El], thm. 2, we get the result. 
QED 

 
 Of course, similar results holds for GBO Q , GBU Q , GBSp Q  and GBSpin Q  . 
 
 
 
3. The structure of GBSO  
 
 In this section we study the structure of the space GBSO  via the λ-ring-structure 

on the functor ( )GKSO − . The aim is to generalize results of Atiyah-Tall and 
Atiyah-Segal. 
 In the following we assume that G is a group of odd order. This implies that the 
numbers k and n of (1.5) are 1 and 0, respectively. Furthermore, 1( )GBOπ  is the 
constant coefficient system / 2Z . 
 We start by showing an equivariant analogue of the splitting principle in Bredon 
cohomology, cf. [Hu], (16.5.2). 
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Lemma 3.1 
 Let E X↓  be a G-bundle. Then there is a G-space ( )Q E  and a G-map 

: ( )q Q E X→ such that *( )q E  splits as a sum of G-line-bundles and the map 
  1 1: ( ; ( )) ( ( ); ( ))G G G Gq H X BO H Q E BO∗ π → π  
is a monomorphism.  
 
Proof: 
 As in the non-equivariant case, [Hu] (16.5.2), we construct ( )Q E  inductively by 
going from X to ( )P E  – the projective bundle of E. We see that the bundle *( )p E  
over ( )P E  splits as a sum of a canonical line-bundle and another bundle of lower 
dimension than E, and we repeat this procedure on the latter bundle. (Here 

: ( )p P E X→  is the projection on the base space). 
 The injectivity of the map in Bredon-cohomology is also shown stepwise. It 
suffices to show that the map 
  * *

1 1: ( ; ( )) ( ( ); ( ))G G G Gp H X BO H P E BO∗ π → π  
is injective. 
 As the order of the group G is odd, and the coefficient system 1( )GBOπ  is a (2)Z -
module, we get from [LMS], (V.6.8) and (V.6.9), that there is a natural isomorphism 
(3.2) * *

1 ( )
: ( ; ( )) ( ; / 2)H

G G H
H Z BO H ZΦ π →⊕ Z  

Here the sum is over all conjugacy classes of subgroups of G. 
 Using (3.2), we reduce the problem to show that 
  * * *( ) : ( ; / 2) ( ( ) ; / 2)H H Hq H X H P E→Z Z  
is injective for every subgroup H of G. But as G is of odd order ( )HP E  equals the 
projective bundle of the real bundle | H

H H
X

E X→ , and we now use the 
non-equivariant splitting principle of [Hu], (16.5.2). 

QED 
 
 

If E X↓  is a real G-bundle, we define 1
1 1( ) ( ; ( ))G Gw E H X BO∈ π  as 1( )w E −V , 

where V is the trivial bundle having *V E=  as fibre. If 1( ) 0w E = , we say that E is G-
orientable. 
 
 
Lemma 3.3 
 Let E and F be G-line-bundles over the G-connected G-space X. Then  
  1 1 1( ) ( ) ( )w E F w E w F⊕ = + .  
 
Proof: 
 Let ( )GL X  be the semi-group of G-line-bundles over X with ⊗  as the 
composition. ( )GL −  is clearly a representable functor. Denote the classifying space by 

GBL . Since ( )GL X  has a natural multiplication for all X, we see that GBL  is a 
G-Hopf-space. 
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 We now get the following homotopy commutative diagram: 

  

1

1

1

1

( ( ),1)

( ( ),1)

k
G G G

i j

w
G G G

BL H BL

BO H BO

⎯⎯→ π
↓ ↓

⎯⎯→ π
 

where the map i is induced by the map 

  *( ) ( ) :GGL X KO X E E E→ −  

and j comes from the GO -group-homomorphism  1 1 1( ) : ( ) ( )G Gj BL BOπ π → π . 
 All these maps except possibly i are Hopf-maps. The commutativity of the 
diagram now gives the result. 

QED 
 
 
Corollary 3.4 
 Assume X is a G-connected G-space. Then ( )GKSO X  is stable under the 
multiplication induced by ⊗ .  
 
Proof: 
 It suffices to show that if E and F are G-orientable then E F⊗  is G-orientable, 
too. By using the splitting principle (3.1), we reduce to the case where E and F are 
line-bundles, and (3.3) gives the result. 

QED 
 
 
 We recall that ( )GKO X  is a λ-ring: If E is a G-bundle over X and n a 
non-negative integer, then nEλ  is the real G-bundle nEΛ , where the G-action is 
given by  
 1 2 1 2( ... ) ( ) ( ) ... ( )n ng e e e ge ge ge∧ ∧ ∧ = ∧ ∧ ∧ . 
 
 
Proposition 3.5 
 Let X be a finite G-connected G-CW-complex. Then ( )GKO X  is a special, finite-
dimensional λ-ring.  
 
Proof: 
 ( )GKO X  is finite-dimensional, as every real G-bundle is finite-dimensional: Let 
E be a G-bundle over X, where n the dimension of a fibre of E. Then 0mEΛ =  for 
m n> . 
 That ( )GKO X  is a special λ-ring follows from the splitting principle in 

GKO -theory; see [tD], p.32. 
QED 

 
Corollary 3.6 
 ( )GKSO X is a special λ-ring. ( )GKSO X  is a λ-ideal in ( )GKSO X . 
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Proof: 
 We must show that if E is a G-oriented G-bundle, then nEΛ  is G-oriented for all 
integers n. Using the splitting principle (3.1), we may assume that E is a sum of 
linebundles, 1 2 ... nE F F F= ⊕ ⊕ ⊕ . We have the isomorphism 

  1 2 (1) ( )( ... ) ( ... )n
m i i nF F F F FΛ ⊕ ⊕ ⊕ = ⊗ ⊗⊕  

where the sum is over all sequences (1) (2) ... ( )i i i n< < <  of integers, cf. [Hu], 

(5.6.10). By using (3.3) we see that 1( )nw EΛ  equals 1( ) 0
m

w E
n

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

QED 
 
Proposition 3.7 
 For X G-connected, the γ -ring ( )GKSO X  is an oriented γ-ring. 
 
Proof: 
 According to [AT], p.285 it suffices to show that for every ( )Gx KSO X∈  there 
exist G-bundles E and F over X such that x E F= − , and, if n denotes the dimension 
of E and F, then the linebundles nEΛ  and nFΛ  are the trivial one-dimensional 
G-bundle V X X× ↓ . 
 Write x as E −V , where E is a G-bundle and V is the trivial bundle V X X× ↓  
for some G-module V, as in (1.7). Discarding the G-actions for a moment, we see that 
  1 1 1 10 ( ) ( ) ( ) ( )w x w E w w E= = − =V  
and thus both nEΛ  and nFΛ  are trivial line-bundles, as ( )KSO X  is an oriented 
λ-ring. We decompose nEΛ  as in (1.5). As nEΛ  is one-dimensional, this 
decomposition most be of the form n

iEΛ ≅ ⊗ ηRR , as R , the trivial one-dimensional 
representation, is the only 1-dimensional representation of G. If we ignore the 
G-action, R  gives the  trivial line-bundle, and n

iEΛ ≅ η  is a trivial bundle. Thus, 
both nEΛ  and nΛ V  are isomorphic to R . 

QED 
 
From now on we assume that p is an odd prime, and that G is a p-group. 
 
 
Proposition 3.8 
 Let X a G-connected G-CW-complex. Then ˆ( )G pKSO X ⊗Z  is a p-adic γ-ring. 
 
Proof: 
 As X is G-connected, the natural inclusion ˆ ˆ( ) ( )G Gp pKSO X KO X⊗ → ⊗Z Z  is a 
monomorphism preserving the γ-ring-structure. [tD], (3.8.6) now gives the result. 

QED 
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Theorem 3.9 
 There is a splitting of G-Hopf-spaces: 

  ^
0 1 1

1( ) ... ,
2G p m

pBSO B B B m⊕ ⊕ ⊕ ⊕
−

−
× × =  

Proof: 
 [AT], lemma 2.2, p.279 shows that, as ˆ( )G pKSO X ⊗Z  is a p-adic γ-ring, the 

domain of the Adams operations ˆ ˆ: ( ) ( )k
G Gp pKSO X KSO Xψ ⊗ → ⊗Z Z  in the 

variable k extends by continuity to operations  
  ˆ ˆ: ( ) ( )a

G Gp pKSO X KSO Xψ ⊗ → ⊗Z Z ,  

where ˆ
pa∈Z . 

 Letting α be a generator of the finite factor /( 1)p −Z  of the splitting 
  *ˆ ˆ( ) /( 1)p pp≅ − ×Z Z Z  

we have from [AT], p.284, that ˆ( )G pKSO X ⊗Z  splits canonically into eigenspaces 

for the operator αψ , the eigenvalues being , 0,1,..., 2i i pα = − . 
 As this splitting is canonical in the space X, we get a corresponding splitting of 
the classifying space ^( )G pBSO  into 1p −  components. 
 Half of these components vanish: Let i be one of the odd numbers 1, 3, ... 2p − , 
and let ˆ( )G px KSO X∈ ⊗Z  be an eigenvector for αψ  with eigenvalue iα . As 

( 1) / 2 1p−α = − , [AT], (5.2), p.264, shows that 
  

( 1) / 21 ( 1) / 2( ) ( )
i p i px x x x

−− α −ψ = ψ = α = −  
But as ˆ( )G pKSO X ⊗Z  is an oriented γ-ring, (3.7), 1−ψ  acts as the identity operator, 
see [AT], p.285. Thus, x must be 0, and these all of 'odd' components vanish. 

QED 
 
 
Theorem 3.10 
 Let p be an odd prime. Then there is a splitting of G-Hopf-spaces 

  ^
0 1 1

1( ) ... ,
2G p m

pBSO B B B m⊗ ⊗ ⊗ ⊗
−

−
× × =  

 
Proof: 
 The proof is the same as that of (3.9) - the Adams operation aψ  acts on 

^1 ( )G pKSO X+  by ( )
ia ax xψ = , where x is an element of the i'th eigenspace. 

QED 
 
Theorem 3.11 
 Let p be an odd prime and let k be an integer such that 2k p+ Z  generates the 
group of units in the ring 2/ pZ Z . Then the cannibalistic class kρ  induces an G-
homotopy-equivalence of G-Hopf-spaces 
  0 0:k B B⊕ ⊗ρ →  
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Proof: 
 [AT] (II 4.4). 

QED 
 
 
We obtain from [AS] thm.2 : 
 
 
Theorem 3.12 
 Let p be a prime. Then there is a G-homotopy equivalence of G-Hopf-spaces 
  ^ ^: ( ) ( )G p G pBSO BSO⊕ ⊗δ →  
 
 
 A variant of δ  is δ , which is the map kρ  at the first component 0B  and δ  at the 
rest of the components. As above we see that 

(3.13) ^ ^: ( ) ( )G p G pBSO BSO⊕ ⊗δ →  

is an equivalence of G-Hopf-spaces. 
 
 
Remark 3.14 
 Actually, the results of [AT] and [AS] cannot be used directly in (3.9)-(3.13): In 
[AT] and [AS] it is assumed that we have a λ-ring R with an augmentation : Rε → Z , 
and then the results of [AT] holds for the augmentation ideal I. 
 We are in a more general situation, in that we have the λ-ring ( )GKSO X  and the 
λ-homomorphism : ( ) ( )GKSO X RO Gε →  sending a G-bundle E to the representation 

*E . The kernel of ε is ( )GKSO X . It is possible to generalize the results of [AT] and 
[AS] to this case without any serious difficulties. 
 
 
Counterexample 3.15 
 The crucial step in getting (3.9)-(3.12) from [AT] and [AS] is (3.8). When G is 
not a p-group, or when we do not localize at the order of the group, (3.8) does not 
hold. We give a simple counterexample: 
 If (3.8) did hold, then we would have, as in (1.5.6) in [AT], that the Adams' 
operation : ( ) ( )k

G GKSO X KSO Xψ →  would be p-adically continuous in the variable 
k. 
 Let / 3G = Z  be the cyclic group of order 3, and let p be the prime 5. Then 

4( )n
GKSO S  is isomorphic to ( )RO G  and is a free Z -module of rank 2 with 

generators 1, V corresponding to the two irreducible GR -modules of dimension 1 and 
2, respectively. kψ  maps 1a bV+  to 2 ( 1 )nk a bV+  if ( ,3) 1k =  and to 2 ( 2 )nk a b+  if 
3 | k . 
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 If kψ  was 5-adically continuous in k, then for every 4( )n
Gx KSO S∈  and integer 

m we could find an integer r, such that for 5 |r s  and integer k, we would have  
  4( ) ( ) 5 ( )k s k m n

Gx x KSO S+ψ −ψ ∈ ⋅   
But if 3 | ( )k s+  and (3, ) 1k =  and 1x a bV= + , then 
  2 2 2 2( ) ( ) ((( ) ) 2 )1k s k n n n nx x k s k a k b k V+ψ −ψ = + − + +  
which definitely not is contained even in 45 ( )n

GKSO S⋅ . 
 
 
4. GSF  and the Adams' conjecture 
 
 We now proceed to study the G-space GSF . Important ingredients in this analysis 
is the equivariant Adams' conjecture, due to McClure, cf. [MC], and the results of §3. 
Our standing assumption is that p is an odd prime, G is a p-group, and that all spaces 
are p-local. 
 
 
Definition 4.1 
 Let 0

GQ S  be the G-loop-space lim V VS
→
Ω , where the limit is over all G-modules 

in a fixed, complete G-universe U , cf. [LMS] p. 11. 0
GQ S  is a 'G-ring-space', where 

the additive structure comes from the 'loop-sum' * : V V V VS SΩ →Ω , which exists for 
every G-module V, and where the multiplication is composition of maps. We let the 
identity map be the basepoint of 0

GQ S . 
 Let GSF  be the G-connected cover of 0

GQ S . GSF  inherits a (multiplicative) G-
Hopf-space structure from 0

GQ S . 
 
 Certain facts about 0

GQ S  are well-known - we recall from [S70], p.62, that 
(4.2) 0

( )

( ) ( )G
G H

H

Q S Q BW∏ , 

where the product is over all conjugacy classes (H) of subgroups of G. HW  is the 
Weyl-group ( ) /GN H H . By taking connected covers we see that 

(4.3) 0
( )

( ) ( )G
G H

H

SF Q BW∏ ,  

where 0 ( )HQ BW  is the basepoint component of ( )HQ BW . 
 
 
Definition 4.4 
 Let X be a finite G-CW-complex. The G-fibration : E Xξ →  is a spherical G-
fibration or a G-sphere-bundle, if 

1)  for every x X∈ there is a xG -representation V such that the fibre xE  is xG - 
 homotopy-equivalent to VS ,  and 
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2)  the map X E→  given by (the basepoint of )xx E  is a G-cofibration. 
 
 (This is the definition of [MC], p.230-231). 
 
Fibre-wise smash-products makes the set of G-sphere-bundles over X into a 
semigroup, and the corresponding Grothendieck group is denoted ( )GKF X . The 

subgroup ( )GKF X  is defined as follows 

(4.5)  ( ) : as spacesG x x xE F KF X x X E F G− ∈ ⇔ ∀ ∈ − . 

 The functors ( )GKF −  and ( )GKF −  are easily seen to be representable functors. 

We denote the classifying space of ( )GKF −  by GBF . 
 
 It follows from [W] that 

(4.6) 0 ( ) 0GBFπ =    and   1( ) ( )GBF A G ×π ≅ , 

where the GO -group ( )A G ×  is given by ( ) ( / ) ( )A G G H A H× ×=  – the unit group of the 
Burnsidc ring ( )A H . Furthermore, we see that GBF  is the classifying G-space of the 
G-monoid GF  – the subspace of 0

GQ S  consisting of G-homotopy-equivalences with 
the monoid structure coming from composition of maps. 
 
 Let GBSF  be the 1-connected cover of GBF . It follows that GBSF  is the 
classifying space of the monoid GSF , and thus 

(4.7) G GBSF SFΩ  

 
 Define the natural transformation : ( ) ( )G G GJ KO X KF X→  by sending the real 
G-bundle E X↓  to its fibrewise one-point compactification ES X↓ . It is 
immediately seen that GJ  restricts to a natural transformation ( ) ( )GGKO X KF X→ , 
and thus produces a G-Hopf-map :G G GJ BO BF→ . Furthermore, by killing off  1π , 
we get a lift of :G G GJ BSO BSF→ . 
 
 Let / GF O  and / GSF SO  be the homotopy fibres of :G G GJ BO BF→  and 

:G G GJ BSO BSF→  respectively. 
 
 
Proposition 4.8 
 The natural map : / /G GSF SO F Oθ →  is a G-homotopy equivalence if G is of 
odd order or if we localize at an odd prime p. 
 
Proof: 
 We have the G-homotopy commutative diagram: 
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1 1

/

/

( ( ),1) ( ( ),1)

G

G

J
G G G

J
G G G

G G G G

SF SO BSO BSF

F O BO BF

H BO H BFψ

θ

⎯⎯→ ⎯⎯→
↓ ↓ ↓

⎯⎯→ ⎯⎯→
↓ ↓

π ⎯⎯→ π

 

 
 Let H be a subgroup of G. 1( ) ( ) / ( )H

GBO RO H R Hπ ≅ and 1( ) ( )H
GBF A H ×π =  

are both 2-torsion groups, and θ is thus an equivalence away from 2. 
 If G is of odd order, then both ( ) / ( )RO H R H  and ( )A H ×  are isomorphic to 

/ 2Z . Furthermore, the non-zero element in 1 1( ( / ) ) ( )G HKO S G H KO S+∧ ≅  is 
represented by the reduced Möbius-bundle with trivial G-action and, as in the 
non-equivariant case, is mapped by GJ  to the non-trivial element in 

1( ( / ) )GKF S G H +∧ . Thus ψ  is a G-homotopy equivalence and the result follows. 
QED 

 
 
 The Adams conjecture relates GJ  to the Adams-operations in K-theory. The non-
equivariant version states: 
 
 Let k be an integer, ( )x KO X∈ . Then there exist an integer n, such that 
  ( ) 0n kk J x xψ − =  . 
 
 By localizing at a prime p, satisfying ( , ) 1p k = , we get rid of the factor k. 
Various attempts have been made to generalize the Adams conjecture to the 
equivariant case. In [FHM], theorem 0.4, it is shown that ( ) 0n kk sJ x xψ − = , where 
( , ) 1k G = , and s is the minimal integer, such that 1 (mod )sk G≡ ± . The extra factor 

s is necessary – it insures that the 'fibres' of the virtual G-bundles k xψ  and x are the 
same element in ( )aR G  for every a X∈ . 
 McClure has another variation, cf. [MC] (5.1). This uses a variant of the functor 

( )GKF X : 
 
 Let p be a prime. Define the equivalence relation ∼  of stable p-equivalence on 

( )( )G pKF X  as follows: The G-sphere-bundles E and F are stably p-equivalent if there 
exists a real G-representation V and G-fiber maps 
  1 : V Vf S E S F→  and  2 : V Vf S F S E→  
such that 1f  and 2f  have degrees prime to p on all fixed sets of each fibre. 
 Denote the set of stably p-equivalence classes in ( )( )G pKF X  by ( ) ( )p

GKF X , and 

denote the reduced version by 
( )

( )
p

GKF X . 
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 The relation between ( )( )G pKF X   and ( ) ( )p
GKF X  is as follows, cf. [MC], (1.3): 

 
 Let X be a G-connected, finite G-CW-complex. Then there is a natural, short 
exact sequence 
  ( )

( )0 ( ) ( ) ( ) 0p
G p GjO G KF X KF Xα→ ⎯⎯→ ⎯⎯→ →  

where 0( ) ( ) / ( )hjO G RO G RO G=  ([tD] p.229), and α is the composite 
  ( ) ( ) ( )( ) Im( : (*) (*) ) ( )G p G p G pjO G J KO KF KF X→  
 
 
Lemma 4.9 
 For X G-connected we have 

( )
( )( ) ( )

p
G GpKF X KF X≅ . 

 
Proof: 
 We have the exact commutative diagram 
  

  

( )
( )

( )
( ) ( )

( )
( ) ( )

0 0

0 ( ) ( ) 0

0 ( ) ( ) ( ) 0
||

0 ( ) (*) (*) 0

0 0 0

p
G Gp

p
p G p G

p
p G p G

KF X KF X

jO G KF X KF X

jO G KF KF

↓ ↓

→ → →
↓ ↓ ↓

→ → → →
↓ ↓

→ → → →
↓ ↓ ↓

 

 
QED 

 
 
The equivariant Adams' conjecture [MC], (5.1) is now 
 
 
Theorem 4.10 
 Let p be an odd prime and let k be an integer prime to p and G  . Then the 
composite 
  1

( ) ( ) ( )( ) ( ) ( )
k J

G p G p G pBSO BSO BSFψ −⎯⎯⎯→ ⎯⎯→  
is null-homotopic. 
 
 
 Actually, this is not McClures formulation of the Adams conjecture, but upon 
using reduced GKO - and GKF -groups, and by using (4.9), we get the result above. 
The reason why this formulation doesn't involve extra factors is that we work in 
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reduced GKO - and GKF -theory. This means that the condition that ξ  and kξ  have the 
same fibres over x in ( )xR G  for x X∈ , is automatically fulfilled. 
 
 
Corollary 4.11 
 There is a map ( ) ( ): ( ) ( / )k G p G pBSO F Oα →  such that 
 

  
( ) ( ) ( )

( )

1

( / ) ( ) ( )

( )

J
G p G p G p

k
k

G p

F O BSO BSF

BSO
α ψ −

⎯⎯→ ⎯⎯→
↑  

 
commutes up to homotopy. 
 
 
Definition 4.12 
 Let G be a group of odd order, and let p be an odd prime. Let k be an integer, 
such that 2k p+ Z  generates the unit group 2( / )p ×Z Z . Define the G-Spaces GJ ⊕  and 

GJ ⊗  as the homotopy fibres of the maps 1:k
G GBSO BSO⊕ ⊕ψ − →   and 

/1:k
G GBSO BSO⊗ ⊗ψ → . As both 1kψ −  and /1kψ  are Hopf-maps, GJ ⊕  and GJ ⊗  

becomes G-Hopf-spaces. GJ ⊕  and GJ ⊗  are equivalent G-Spaces, but the 
Hopf-structures will in general be different. 
 
 
Remark 4.13 
 In [FHM], (0.5) it is shown that GJ  is the G-connected cover of equivariant, 
orthogonal, algebraic K-theory, ( , )kKO GF , provided that k is a prime power. 
 
 
5. The e-invariant and the Sullivan splittings 
 
 We now generalize the splittings 

  / CokF O BSO J×    and     CokSF J J×   

of Sullivan to the equivariant case. We already have one of the maps needed to prove 
this, namely kα , and we now define the other – the e-invariant. 
 As usual, p is an odd grime, G is a p-group, all spaces are p-local, and k is an 
integer such that 2k p+ Z  generates the unit group 2( / )p ×Z Z . 
 
 The main reason for studying G-Spin-bundles is that, as in the non-equivariant 
case, a G- (8 )Spin n -bundle has a Thom-class in GKO -theory. Recall from [A], (6.1): 
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Theorem 5.1 
 Let Π be a compact Lie group, V a Π-Spin-module of dimension 8n, and X a 
compact G-Space. Then there is an element ( )Gu KO X∈ , defined by using the Dirac 
operator on V, such that multiplication with u induces an isomorphism 
  ( ) ( )G GKO X KO X V→ ×  
 
 
Theorem 5.2 
 Let G be a finite group, E X↓  a G- (8 )Spin n -bundle over the compact 
G-connected G-CW-space X. Then there is an isomorphism 
  : ( ) ( ( ))GE GKO X KO T EΦ →  
where ( )T E  is the Thom-complex of E. 
 
Proof: 
 Let R X↓  be the principal G-Spin(8n)-bundle corresponding to E, that is, we 
have a G-Spin(8n)-module V such that (8 )Spin nE R V≅ ×  (V is actually the fibre of E, at 
the base point of X, and the equivalence above follows from the fact that X is 
G-connected). 
 As Spin(8n) acts freely on R, we see that 
   (8 ) ( ) ( / (8 )) ( )G Spin n G GKO R KO R Spin n KO X× ≅ ≅ ,  
and that  
  (8 ) ( ) ( ) ( ( ))GG Spin n GKO R V KO E KO T E× × ≅ ≅  
as E is not a compact G-space. The result follows now immediately from (5.1). 

QED 
 
 
 We construct a G-Hopf-map : / G Ge F O BSO ⊗→  as follows: 
 Let X be a finite G-connected G-CW-complex. Then the elements in [ , / ]G

GX F O  
can be described as 3-tuples ( , , )E F h , where E and F are stable G-bundles over X, 
such that ( )GE F KSO X− ∈  and where h is a fibrewise G-homotopy equivalence 

: E Fh S S→ . (See [BM], p.146 for a closer description of the group structure on 
[ , / ]G

GX F O .) 
 Since 2 is inverted, we can assume that that E and F are G-Spin-bundles, and by 
stabilizing, we can further assume that E and F are G-Spin(8n)-bundles. 
 Let (1) ( ( ))GE E KO T EΔ = Φ ∈  and  (1) ( ( ))GF F KO T FΔ = Φ ∈  be the 
Thom-classes of E and F. h gives a map ( ) ( )T E T F→ , and we define ( , , )e E F h  as 
the unique element in 1 ( )GKO X+  satisfying 

(5.3) *( ) ( , , )F Eh e E F hΔ = ⋅ Δ  

– observe that ( ( ))GKO T E  is a free ( )GKO X -module of rank 1, and that EΔ  and 
*( )Fh Δ  are the image of units of ( )GKO X . 
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Proposition 5.4 
 We have a G-homotopy commutative diagram 
 

  
1/

/ i
G G

k

k

G G

e

F O BSO

BSO BSO

⊕

ρ

ψ⊗ ⊗

⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
where k is an integer, and : / G Gi F O BSO ⊕→  is the 'inclusion' map. 
 
Proof: 
 Let X be a finite, G-connected G-CW-complex, ( , , ) [ , / ]G

GE F h X F O∈ . Then  

  

* *

*

1

( ) ( )(1/ )( , , ) (1/ )
( )

( ) ( ( )) ( ) ( ( , , ))

k
k k F E F

k
E E F

k k k k

h he E F h
h

E F E F i E F h−

⎛ ⎞Δ ψ Δ Δ
ψ = ψ = ⋅ =⎜ ⎟Δ Δ ψ Δ⎝ ⎠

ρ ⋅ ρ = ρ − = ρ

 

QED 
 
 
Corollary 5.5 
 The composite / e

G G GSF F O BSO ⊗⎯⎯→ ⎯⎯→  factors through GJ . 
 
Proof: 
 We must show that the composite 1//

ke
G G G GSF F O BSO BSOψ⊗ ⊗⎯⎯→ ⎯⎯→ ⎯⎯⎯→  

is nullhomotopic. But from (5.4) we have the homotopy commutative diagram 
 

  
1/

/
k

k

j i
G G G

G G

e

SF F O BSO

BSO BSO

⊕

ψ⊗ ⊗

ρ

⎯⎯→ ⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
and as i j  is null-homotopic, we get the result. 

QED 
 
 
Lemma 5.6 
 Let k be as in (4.12). Let : /k G GBSO F O⊕α →  be the map of (4.11). Then the 
composite :k G Ge BSO BSO⊕ ⊗α →  is G-homotopic to :k

G GBSO BSO⊕ ⊗ρ → . 
 
Proof: 
 We have the diagram 
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1

1/

||
/

k

k

G G

k
i

G G
k

e

G G

BSO BSO

F O BSO

BSO BSO

−ψ⊕ ⊕

α

⊕

ρ

ψ⊗ ⊗

⎯⎯⎯→
↓

⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
which is homotopy commutative because of (4.11) and (5.4). As 
 

  

1

1/

k

k

G G
k k

G G

BSO BSO

BSO BSO

−ψ⊕ ⊕

ρ ρ

ψ⊗ ⊗

⎯⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
is commutative, too, we see that 1/ ( )k keψ α  and 1/ k kψ ρ  are G-homotopic maps. 
 As in [AII], p.152, it is possible to define kρ  on a complex G-bundle E X↓  by 
using the Thom-isomorphism : ( ) ( ( ))GE GK X K T EΦ → , where ( )T E  is the 
Thom-complex of E, cf. [A], (4.8). We have 

(5.7) 1( ) (1) ( )k k
E E GE K X−ρ = Φ ψ Φ ∈ , 

and from [AII], (5.4), we get 

(5.8) 1 ( ) ( ) ( ) , ( )k k k
E E Gx E x x K X−Φ ψ Φ = ρ ⋅ψ ∈  

(This definition of kρ  coincides with that of [AT], p. 281 and p. 268 – see [AT], p.286 
ff.). 
 Letting 2 ( *)n nY S T= = ↓C  and by using the exponential nature of kρ  and its 
behaviour on complex line-bundles, we see that ( *)n nkρ ↓ =C  and from [tD], (3.5.1), 
and (5.8), we get 

(5.9) ( ( ))( ) ( ) ,k ng k g g Gψ χ = ⋅ χ ∈ , 

where 2( )n
GK Sχ∈   is considered as a complex character under the Thom-

isomorphism 
  2: ( ) (*) ( )n

n
G GR G K K SΦ = →C  

 As 2 is inverted, the map 
  2 2( ) ( ) ( ) ( )n n

G GKSO S RO G R G K S≅ → ≅  
given by 'complexification' of representations, is injective, and preserves the 
λ-ringstructure. 
 Selecting a Z -basis for ( )RO G  consisting of the irreducible representations, we 
see that the matrix of the map 1kψ −  has non-vanishing determinant – modulo k this 
matrix is simply the diagonal matrix with –1 as the only entrys. We conclude that 

1kψ −   induces monomorphisms 
  2 2 2(( 1) ) : ( ) ( )k H H H

n n G n GBSO BSOπ ψ − π → π  
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for every subgroup H of G. 
 Going over to the multiplicative structure, we again have that 1/ kψ  gives 
monomorphisms in homotopy (for odd n ( )H

n GBSOπ vanishes). We conclude that 

ke α  and kρ  give the same maps on the homotopy groups. 
 If we now consider kρ  and ke α  as natural transformations between the 

representable functors ( )GKSO −  and 1 ( )GKSO+ − , we see that they coincide on the 
G-cells ( / )nS G H +∧ .  We want to show that kρ  and ke α  coincide on every 
G-CW-complex. 
 As ( )G GKSO BSO   is torsion-free, ([MR], at the bottom of p. 97,) it suffices to 
show that kρ  and ke α  coincide after rationalization. By applying (2.9), which states 
that both GBSO ⊕Q  and GBSO ⊗Q  are products of equivariant Eilenberg-MacLane-
spaces, and Elmendorf's description of G-cohomology, [El], p.277, the problem 
reduces to show that for every integer 2n >  and subgroup H of G the natural 
transformations 
  ( ; ( ) ) ( ; ( ) )n H n H

n G n GH BSO H BSO− π ⊗ → − π ⊗Q Q  
induced by (( ) )k H

nπ ρ  and (( ) )k H
n eπ α coincide. But ( )k Hρ  and ( )k He α  agree on 

homotopy groups, and the result follows. 
QED 

 
Definition 5.10 
 Recall the G-Hopf-Space splitting 
  0 0( )GBSO B B⊗ ⊗ ⊗ ⊥×  
of (3.9), where 0 1 1( ) ... mB B B⊗ ⊥ ⊗ ⊗

−× × . Let π  and ⊥π  be the projections  
  0: GBSO B ⊗π →  and 0: ( )GBSO B⊥ ⊗ ⊥π → . 
 Define : / G GF O BSOβ →  as the composite 

  
/ / / e i

G G G

Id
G G G G G

F O F O F O

BSO BSO BSO BSO BSO
⊥

Δ ×

×δ π×π⊗ ⊕ ⊗ ⊗ ⊗

⎯⎯→ × ⎯⎯→

× ⎯⎯⎯→ × ⎯⎯⎯→
 

 Here Δ is the diagonal map, while δ  is the map from (3.12). 
 Finally, define the G-space Cok GJ  as the homotopy fibre of β . 
 
 
 We are now able to generalize the splittings of Sullivan [MN], (5.18)) to the 
equivariant case. 
 
 
Theorem 5.11 
 β  gives a splitting 
  / CokG G GF O BSO J×  
 
 
Proof: 
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 We show that :k G GBSO BSOβ α →  is a G-homotopy equivalence: 
 :k G GBSO BSO⊕ ⊗β α →  G-homotopic to the composite 

  ( 1)
0 0( )

k k

G G GBSO BSO BSO B B
⊥πρ ×π δ ψ −Δ⊕ ⊕ ⊕ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯⎯⎯⎯→ ×  

as it follows from (5.6) and (4.11). Separating GBSO ⊕  into 0B ⊕  and 0( )B ⊕ ⊥ , we see 
that the composite 
  0 0 0( )GB BSO B Bβ α⊕ ⊕ ⊗ ⊗ ⊥→ ⎯⎯→ ×  
equals 
  0

0 0 0 0 0( )
k

B B B B BΔ πρ ×⊕ ⊕ ⊕ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯→ ×  
where 0 is a null-homotopic map, while the composite 
  0 0 0( ) ( )GB BSO B Bβ α⊕ ⊥ ⊕ ⊗ ⊗ ⊥→ ⎯⎯→ ×  
becomes 
  ( 1)

0 0 0 0 0( ) ( ) ( ) ( )
k k

B B B B B
⊥πρ ×π δ ψ −Δ⊕ ⊥ ⊕ ⊥ ⊕ ⊥ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯⎯⎯⎯→ ×  

Thus, if we separate the homotopy groups of the spaces GBSO ⊕  and GBSO ⊗  into 
direct summands 0 0( ) ( ) (( ) )n G n nBSO B B⊕ ⊕ ⊕ ⊥π = π ⊕ π  and 

0 0( ) ( ) (( ) )n G n nBSO B B⊗ ⊗ ⊗ ⊥π = π ⊕ π , the matrix of kβ°α  becomes 

  
0 ( 1)

k k

k

⎛ ⎞ρ ρ
⎜ ⎟

δ ψ −⎝ ⎠
  

 It suffices to show that 0 0:k B B⊕ ⊗ρ →  and 0 0( 1) : ( ) ( )k B B⊕ ⊥ ⊗ ⊥δ ψ − →  are G-
homotopy-equivalences. The first fact follows from (3.11), while the second is more 
or less obvious – one needs the fact that δ  preserves the splittings (3.9) and (3.10), 
but this follows from the construction of δ , (3.12) and [AS], thm. 3. Furthermore, on 
the factor 0( )B ⊕ ⊥ , the map 0 01: ( ) ( )k B B⊕ ⊥ ⊕ ⊥ψ − →  is a G-homotopy-equivalence, as 
this follows from the proof of (3.9), and the description of 0( )B ⊕ ⊥  therein. 

QED 
 
Corollary 5.12 
 We have a splitting 
  CokG G GSF J J×  
 
Proof: 
 We have the G-homotopy commutative diagram 
 

  

1

/1

||
/

k

k

G G G

G G G

G G G

J BSO BSO

SF F O BSO

J BSO BSO

ψ −⊕ ⊕ ⊕

α α

⊕

β β δ

ψ⊗ ⊗ ⊗

⎯⎯→ ⎯⎯⎯→
↓ ↓

⎯⎯→ ⎯⎯→
↓ ↓ ↓

⎯⎯→ ⎯⎯⎯→

 

 
where δ  is the snap from (3.13). Here the horizontal sequences are fibration 
sequences, and the maps α  and β  are the maps induced by α  and β . 
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 Since β α  and δ  are G-homotopy equivalences, a five-lemma argument on 
every fixed point set diagram for every subgroup H of G shows that β α  is a 
G-homotopy equivalence. As δ  is a G-homotopy-equivalence, the homotopy fibres of 
β  and β  must be the same, namely Cok GJ . 

QED 
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